

Integrated Circuit Systems, Inc.

ICS952302

Frequency Generator for Transmeta[™] Efficeon[™]

Recommended Application:

Transmeta Efficion, ATi M6

Output Features:

- 3 CPUs @ 3.3V including 1 free running CPUCLK_F
- 7 PCI @ 3.3V, including 4 free running PCICLK_F
- 1 27MHz clock @ 3.3V
- 2 48MHz clocks @ 3.3V
- 2 REF clocks @3.3V

Key Specifications:

- CPU output jitter: < 250ps
- PCI output skew: < 250ps
- CPUT PCI output skew: 1-3ns
- 27MHz Accuracy < 50ppm
- 48MHz Accuracy < 50ppm

Functionality

Bute 4h7	Bute the	Dute 4h5	Spread		
Byte 4b7	Byte 4b6	Byte 4b5	q	%	
0	0	0	+/-0.3		
0	0	1	+/-0.6	CENTER	
0	1	0	+/-0.25	GENTER	
0	1	1	+/-0.45		
1	0	0	-0.60%		
1	0	1	-1.20%	DOWN	
1	1	0	-0.50%	DOWN	
1	1	1	-0.90%		

Features:

- Support I2C Index read/write and block read/write operations.
- Uses external 14.318MHz referience input or XTAL.
- Full Load Power consumption reduced >10% compared to reference device
- Power management via SMBus

		•		
VDDREF	1		48	REF1
REF0	2		47	VDDCPU
GNDREF	3		46	N/C
X1 4	4		45	CPUCLK0
X2	5		44	GNDCPU
VDDPCI	6		43	CPUCLK1
PCICLK_F0	7		42	CPUCLK_F
PCICLK_F1	8		41	CPU_STOP#
GNDPCI	9		40	GND
PCICLK0	10	2	39	N/C
PCICLK1	11	CS952302	38	OE*
PCICLK_F2	12	23	37	N/C
PCICLK_F3	13	<i>i</i> 6	36	VDD
VDDPCI	14	ö	35	N/C
PCICLK2	15	-	34	VDD27
GNDPCI	16		33	GND
N/C	17		32	27MHZ
N/C	18		31	N/C
VDDCOR	19		30	N/C
PCI_STOP#	20		29	N/C
**PD# 2	21		28	GND48
GND48	22		27	VDD48
SDATA	23		26	48MHZ_1
SCLK	24		25	48MHZ_0

48-TSSOP

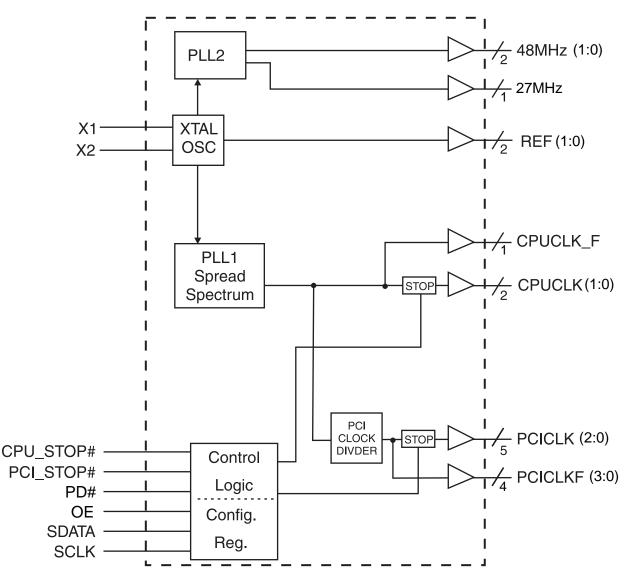
* Internal Pull-Up Resistor **No Diode Clamp to VDD

Pin Configuration

Pin Descriptions

PIN #	PIN NAME	PIN TYPE	DESCRIPTION
1	VDDREF	PWR	Ref, XTAL power supply, nominal 3.3V
2	REF0	OUT	14.318 MHz reference clock.
3	GNDREF	PWR	Ground pin for the REF outputs.
4	X1	IN	Crystal input, Nominally 14.318MHz.
5	X2	OUT	Crystal output, Nominally 14.318MHz
6	VDDPCI	PWR	Power supply for PCI clocks, nominal 3.3V
7	PCICLK_F0	OUT	Free running PCI clock not affected by PCI_STOP# .
8	PCICLK_F1	OUT	Free running PCI clock not affected by PCI_STOP# .
9	GNDPCI	PWR	Ground pin for the PCI outputs
10	PCICLK0	OUT	PCI clock output.
11	PCICLK1	OUT	PCI clock output.
12	PCICLK_F2	OUT	Free running PCI clock not affected by PCI_STOP# .
13	PCICLK_F3	OUT	Free running PCI clock not affected by PCI_STOP# .
14	VDDPCI	PWR	Power supply for PCI clocks, nominal 3.3V
15	PCICLK2	OUT	PCI clock output.
16	GNDPCI	PWR	Ground pin for the PCI outputs
17	N/C	N/C	No Connection.
18	N/C	N/C	No Connection.
19	VDDCOR	PWR	3.3V power for the PLL core.
20	PCI_STOP#	IN	Stops all PCICLKs at logic 0 level, when low. Free running PCICLKs are not effected by this input.
21	**PD#	IN	Asynchronous active low input pin, with 120Kohm internal pull-up resistor, used to power down the device. The internal clocks are disabled and the VCO and the crystal are stopped.
22	GND48	PWR	Ground pin for the 48MHz outputs
23	SDATA	I/O	Data pin for SMBus circuitry, 5V tolerant.
24	SCLK	IN	Clock pin of SMBus circuitry, 5V tolerant.
25	48MHZ_0	OUT	48MHz clock output.
26	48MHZ_1	OUT	48MHz clock output.
27	VDD48	PWR	Power pin for the 48MHz output.3.3V
28	GND48	PWR	Ground pin for the 48MHz outputs
29	N/C	N/C	No Connection.
30	N/C	N/C	No Connection.
31	N/C	N/C	No Connection.
32	27MHZ	OUT	27.0000MHz Video Clock for ATi Chipset
33	GND	PWR	Ground pin.
34	VDD27	PWR	Power pin for the 27MHz output.3.3V
35	N/C	N/C	No Connection.
36	VDD	PWR	Power supply, nominal 3.3V
37	N/C	N/C	No Connection.
38	OE*	IN	Active high input for enabling Memory Channel outputs. 0 = tri-state outputs, 1= enable outputs
39	N/C	N/C	No Connection.
40	GND	PWR	Ground pin.
41	CPU STOP#	IN	Stops all CPUCLK, except those set to be free running clocks
42	CPUCLK F	OUT	Free running CPU clock. Not affected by the CPU STOP#.
43	CPUCLK1	OUT	CPU clock outputs. 3.3V
44	GNDCPU	PWR	Ground pin for the CPU outputs
45	CPUCLK0	OUT	CPU clock outputs. 3.3V
46	N/C	N/C	No Connection.
47	VDDCPU	PWR	Supply for CPU clocks, 3.3V nominal
48	REF1		14.318 MHz reference clock.
-	al Pull-Up Resistor		de clamp to VDD.

* Internal Pull-Up Resistor


** No diode clamp to VDD.

General Description

Spread spectrum may be enabled through SMBus programming. Spread spectrum typically reduces system EMI by 8dB to 10dB. This simplifies EMI qualification without resorting to board design iterations or costly shielding. The **ICS952302** employs a proprietary closed loop design, which tightly controls the percentage of spreading over process and temperature variations.

Block Diagram

ICS952302

SMBus Ta	SMBus Table: Output Control Register							
Byte	0 Pin #	Name	Control	Туре	0	1	PWD	
Byte	•	Name	Function	Type	v	•	1 100	
Bit 7	42	CPUCLK_F	Output Enable	RW	Disable	Enable	1	
Bit 6	45	CPUCLK0	Output Enable	RW	Disable	Enable	1	
Bit 5	43	CPUCLK1	Output Enable	RW	Disable	Enable	1	
Bit 4	32	27MHZ	Output Enable	RW	Disable	Enable	1	
Bit 3	25	48MHZ_0	Output Enable	RW	Disable	Enable	1	
Bit 2	26	48MHZ_1	Output Enable	RW	Disable	Enable	1	
Bit 1	2	REF0	Output Enable	RW	Disable	Enable	1	
Bit 0	48	REF1	Output Enable	RW	Disable	Enable	1	

SMBus Table: Output Control Register

Byte	1 Pin #	Name	Control	Туре	0	1	PWD
Byte	1 FIII#	Indille	Function	туре	0	1	1110
Bit 7	7	PCICLK_F0	Test Mode	RW	Disable	Enable	1
Bit 6	8	PCICLK_F1	Output Enable	RW	Disable	Enable	1
Bit 5	12	PCICLK_F2	Output Enable	RW	Disable	Enable	1
Bit 4	13	PCICLK_F3	Output Enable	RW	Disable	Enable	1
Bit 3	10	PCICLK0	Spread Control	RW	Disable	Enable	1
Bit 2	11	PCICLK1	Output Enable	RW	Disable	Enable	1
Bit 1	15	PCICLK2	Output Enable	RW	Disable	Enable	1
Bit 0	-	Spread Spectrum Mode	Spread Control for PLL1	RW	OFF	ON	0

SMBus Table: Output Control Register

Byte	2 Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	42	CPUCLK_F	Allow assertion of CPU_STOP# or setting of	RW	Free Running	Stoppable	0
Bit 6	45	CPUCLK0	CPU_STOP control bit in	RW	Free Running	Stoppable	1
Bit 5	43	CPUCLK1	SMBus register to stop CPU clocks	RW	Free Running	Stoppable	1
Bit 4	-	Reserved	Reserved	RW	-	-	х
Bit 3	-	Reserved	Reserved	RW	-	-	х
Bit 2	(note)	CPU_STOP	Stop all CPU clocks	RW	Enable	Disable	1
Bit 1	-	Reserved	Reserved	RW	-	-	х
Bit 0	20, 41	CPU_STOP# PCI_STOP#	H/w or S/w Select	RW	H/W	I2C	1

Note: Byte2bit2=0 (Enable) to stop all CPUCLK's ONLY when Byte2 bit(5:7) at STOPPABLE MODE

SMBus Table: Output Control Register

Byte	3 Pin #	Name	Control	Туре	0	1	PWD	
Dyte	5 111#	Name	Function	туре	Ū	I		
Bit 7	7	PCICLK_F0		RW	Free Running	Stoppable	0	
Bit 6	8	PCICLK_F1	Allow assertion of	RW	Free Running	Stoppable	0	
Bit 5	12	PCICLK_F2	PCI_STOP# or setting of	RW	Free Running	Stoppable	0	
Bit 4	13	PCICLK_F3	PCI_STOP control bit in	RW	Free Running	Stoppable	0	
Bit 3	10	PCICLK0	SMBus register to stop PCI	RW	Free Running	Stoppable	1	
Bit 2	11	PCICLK1	clocks	RW	Free Running	Stoppable	1	
Bit 1	15	PCICLK2		RW	Free Running	Stoppable	1	
Bit 0	-	PCI_STOP	Stop all PCI clocks	RW	Enable	Disable	1	

SMBus Table: Spread Spectrum Control Register

Byte 4	Pin #	Name	Control	Туре	0	1	PWD
Byte 4	· · · · · · · · · · · · · · · · · · ·	Name	Function	туре	0	-	FWD
Bit 7	-	Spread Position	Center or Down SS	RW	Center	Down	1
Bit 6	-	SS1	Spread Bit 1	RW	Soo S		0
Bit 5	-	SS2	Spread Bit 2	RW	See SS Table		0
Bit 4	-		Reserv	/ed			-
Bit 3	-		Reserv	/ed			-
Bit 2	-		Reserved				-
Bit 1	-	Reserved			-		
Bit 0	-		Reserv	/ed			-

SMBus Table: Control Register

Buto	E	Pin #	Name	Control	Tuno	0	1	PWD
Byte	5	F111 #	Name	Function	Туре	0	I	FWD
Bit 7		-		Reserv	/ed		-	
Bit 6		-		Reserved				
Bit 5		-		Reserved				
Bit 4		-		Reserved				
Bit 3		-		Reserv	/ed			-
Bit 2		-		Reserved				-
Bit 1		-	Reserved				-	
Bit 0		-		Reserv	/ed			-

SMBus Table: Control Register

Byte	6	Pin #	Name	Control	Туре	0	1	PWD	
Byte	0	F111#	Name	Function	Type	0	1	FWD	
Bit 7		-		Reserved				-	
Bit 6		-		Reserved					
Bit 5		-		Reserved					
Bit 4		-		Reserved					
Bit 3		-		Reserv	/ed			-	
Bit 2		-		Reserved					
Bit 1		-	Reserved				-		
Bit 0		-	Reserved				-		

SMBus Table: Vendor & Revision ID Register

Byte	7	Pin #	Name	Control	Туре	0	1	PWD
Byte	'	F III #	Name	Function	Type	0	-	1110
Bit 7		-	RID3		R	-	-	Х
Bit 6		-	RID2	REVISION ID	R	-	-	х
Bit 5		-	RID1	REVISIONID	R	-	-	Х
Bit 4		-	RID0		R	-	-	х
Bit 3		-	VID3		R	-	-	0
Bit 2		-	VID2	VENDOR ID	R	-	-	0
Bit 1		-	VID1		R	-	-	0
Bit 0		-	VID0		R	-	-	1

Absolute Maximum Ratings

Supply Voltage	5.5 V
Logic Inputs	GND -0.5 V to V _{DD} +0.5
Ambient Operating Temperature	0°C to +70°C
Case Temperature	115°C
Storage Temperature	–65°C to +150°C

Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only and functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

V

$T_A = 0 - 70^{\circ}C$; Supply Voltage	ge V _{DD} = 3.3 V ·	+/-5% (unless otherwise stated)				
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input High Voltage	V _{IH}		2		$V_{DD} + 0.3$	V
Input Low Voltage	V _{IL}	V _{SS} -0.3			0.8	V
Input High Current	I _{IH}	N = V _{DD}			5	mA
Input Low Current	I _{IL1}	$V_{IN} = 0$ V; Inputs with no pull-up resistors	-5			mA
Input Low Current	I _{IL2}	V _{IN} = 0 V; Inputs with pull-up resistors -200			mA	
Operating Supply Current	$I_{DD(op)}$ $C_{L} = (full load); 66MHz$ 102		150	mA		
Power Down Supply Current	I _{DDPD}	$C_L = 0 \text{ pF}$; With input address to Vdd or GND		320	600	٨٥
Input frequency	Fi	V _{DD} = 3.3 V;	11	14.3132	16	MHz
Innut Consoltance ¹	C _{IN}	Logic Inputs			5	pF
Input Capacitance ¹	CINX	X1 & X2 pins	27		45	pF
Clk Stabilization ¹	T _{STAB}	From V_{DD} = 3.3 V to 1% target Freq.		3	5.5	ms
Skew ¹	T _{CPU-PCI}	V _T = 1.5 V	1	1.5	4	ns

Electrical Characteristics - Input/Supply/Common Output Parameters

¹Guaranteed by design, not 100% tested in production.

Electrical Characteristics - CPU

 $T_A = 0 - 70^{\circ}C$; $V_{DD} = 3.3 \text{ V} + -5\%$; $C_L = 10 - 20 \text{ pF}$ (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	V _{OH2B}	I _{OH} = -20 mA	2.4	2.9		V
Output Low Voltage	V _{OL2B}	I _{OL} = 12 mA		0.25	0.4	V
Output High Current	1	V _{OUT} = 1 V		-67	-29	mA
Output High Current	ent I _{OH2B}	V _{OUT} = 3.135V	-23	-8		IIIA
Output Low Current	I _{OL2B}	V _{OUT} = 1.95 V	27	56		mA
		V _{OUT} =0.4V		23	30	IIIA
Rise Time ¹	t _{r2B}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$	1	1.4	2	ns
Fall Time ¹	t _{f2B}	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$	1	1.4	2	ns
Duty Cycle ¹	d _{t2B}	V _T = 1.5 V	45	51.5	55	%
Skew ¹	t _{sk2B}	V _T = 1.5 V		60	175	ps
Jitter, Cycle-to-cycle ¹	t _{jcyc-cyc2B}	V _T = 1.5 V		175	250	ps

¹Guaranteed by design, not 100% tested in production.

Electrical Characteristics - PCICLK, PCICLK_F

 T_{A} = 0 - 70°C; V_{DD} = 3.3 V +/-5%; C_{L} = 10 - 20 pF (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	V _{OH2B}	I _{OH} = -20 mA	2.4	2.9		V
Output Low Voltage	V _{OL2B}	I _{OL} = 12 mA		0.25	0.4	V
Output High Current	1	V _{OUT} = 1 V		-67	-29	mA
Output High Current	I _{OH2B}	V _{OUT} = 3.135V	-23	-8		IIIA
Output Low Current	I _{OL2B}	V _{OUT} = 1.95 V	27	56		mA
		V _{OUT} =0.4V		23	30	IIIA
Rise Time ¹	t _{r2B}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$	1	1.3	2	ns
Fall Time ¹	t _{f2B}	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$	1	1.2	2	ns
Duty Cycle ¹	d _{t2B}	V _T = 1.5 V	45	50.5	55	%
Skew ¹	t _{sk2B}	V _T = 1.5 V		68	250	ps
Jitter, Cycle-to-cycle ¹	t _{jcyc-cyc2B}	V _T = 1.5 V		100	250	ps

¹Guaranteed by design, not 100% tested in production.

Electrical Characteristics - 27MHz

 $T_A = 0 - 70^{\circ}C$; $V_{DD} = 3.3 \text{ V} \pm -5\%$; $C_L = 10 - 20 \text{ pF}$ (unless otherwise stated)

A , DD	,					
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Frequency Accuracy	F _{ACC}	REF Out = 14.31818MHz	-50	0	50	ppm
Output High Voltage	V _{OH2B}	I _{OH} = -20 mA	2.4	2.9		V
Output Low Voltage	V _{OL2B}	I _{OL} = 12 mA		0.25	0.4	V
Output High Current	I	V _{OUT} = 1 V		-67	-29	mA
Output High Current	I _{OH2B}	V _{OUT} = 3.135V	-23	-8		ША
Output Low Current	1	V _{OUT} = 1.95 V	27	56		mA
Output Low Current	I _{OL2B}	V _{OUT} =0.4V		23	30	ША
Rise Time ¹	t _{r2B}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$	1	1.1	2	ns
Fall Time ¹	t _{f2B}	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$	1	1.2	2	ns
Duty Cycle ¹	d _{t2B}	V _T = 1.5 V	45	51	55	%
Jitter, Cycle-to-cycle ¹	t _{jcyc-cyc2B}	V _T = 1.5 V		340	400	ps
Duty Cycle ¹	d _{t2B}	V _T = 1.5 V	1 45	51	55	4

¹Guaranteed by design, not 100% tested in production.

Electrical Characteristics - 48MHz

 $T_A = 0 - 70^{\circ}C$; $V_{DD} = 3.3 \text{ V}$ +/-5%; $C_L = 10 - 20 \text{ pF}$ (unless otherwise stated)

		- , , , , , , , , , , , , , , , , , , ,				
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Frequency Accuracy	F _{ACC}	REF Out = 14.31818MHz	-50	0	50	ppm
Output High Voltage	V _{OH2B}	I _{OH} = -20 mA	2.4	2.9		V
Output Low Voltage	V _{OL2B}	I _{OL} = 12 mA		0.25	0.4	V
Output High Current	1	V _{OUT} = 1 V		-67	-29	mA
	I _{OH2B}	V _{OUT} = 3.135V	-23	-8		IIIA
Output Low Current	1	V _{OUT} = 1.95 V	27	56		mA
	I _{OL2B}	V _{OUT} =0.4V		23	30	ША
Rise Time ¹	t _{r2B}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$	1	1.1	2	ns
Fall Time ¹	t _{f2B}	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$	1	1.5	2	ns
Duty Cycle ¹	d _{t2B}	V _T = 1.5 V	45	52	55	%
Jitter, Cycle-to-cycle ¹	t _{jcyc-cyc2B}	V _T = 1.5 V		200	350	ps

¹Guaranteed by design, not 100% tested in production.

Electrical Characteristics - REF

 T_{A} = 0 - 70°C; V_{DD} = 3.3 V +/-5%; C_{L} = 10 - 30 pF (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Frequency Accuracy	F _{ACC}	REF Out = 14.31818MHz	-50	0	50	ppm
Output High Voltage	V _{OH2B}	I _{OH} = -20 mA	2.4	2.9		V
Output Low Voltage	V _{OL2B}	I _{OL} = 12 mA		0.25	0.4	V
Output High Current	1	V _{OUT} = 1 V		-67	-29	mA
Output High Current	OH2B	V _{OUT} = 3.135V	-23	-8		ШA
Output Low Current	1	V _{OUT} = 1.95 V	27	56		mA
Output Low Current	I _{OL2B}	V _{OUT} =0.4V		23	30	ШA
Rise Time ¹	t _{r2B}	V _{OL} = 0.4 V, V _{OH} = 2.4 V	1	1.3	2	ns
Fall Time ¹	t _{f2B}	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$	1	1.7	2	ns
Duty Cycle ¹	d _{t2B}	V _T = 1.5 V	45	53	55	%
Jitter, Cycle-to-cycle ¹	t _{jcyc-cyc2B}	V _T = 1.5 V		270	500	ps
4						

¹Guaranteed by design, not 100% tested in production.

General SMBus serial interface information for the ICS952302

How to Write:

- Controller (host) sends a start bit.
- Controller (host) sends the write address D2 (H)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) sends the data byte count = X
- ICS clock will acknowledge
- Controller (host) starts sending Byte N through Byte N + X -1 (see Note 2)
- ICS clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

How to Read:

- Controller (host) will send start bit.
- Controller (host) sends the write address D2 (H)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) will send a separate start bit.
- Controller (host) sends the read address D3 (H)
- ICS clock will *acknowledge*
- ICS clock will send the data byte count = X
- ICS clock sends Byte N + X -1
- ICS clock sends Byte 0 through byte X
- Controller (host) will need to acknowledge each byte
- Controllor (host) will send a not acknowledge bit
- · Controller (host) will send a stop bit

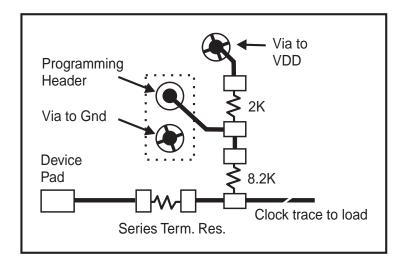
In	Index Block Write Operation						
Co	ntroller (Host)		ICS (Slave/Receiver)				
Т	starT bit						
Slav	e Address D2 _(H)						
WR	WRite						
			ACK				
Beg	inning Byte = N						
			ACK				
Data	Byte Count = X						
			ACK				
Begir	nning Byte N						
			ACK				
	0	fe					
	0	X Byte	0				
	0	\times	0				
			0				
Byt	e N + X - 1						
			ACK				
Р	stoP bit						

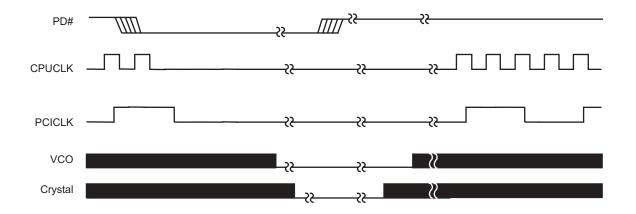
Index Block Read Operation					
Cor	ntroller (Host)	IC	S (Slave/Receiver)		
Т	starT bit				
Slav	e Address D2 _(H)				
WR	WRite				
			ACK		
Begi	nning Byte = N				
	-		ACK		
RT	Repeat starT				
Slav	e Address D3 _(H)				
RD	ReaD				
			ACK		
		Data Byte Count = X			
	ACK				
			Beginning Byte N		
	ACK				
		X Byte	0		
	0		0		
0		$\left \right\rangle$	0		
	0		Duto N + V 1		
N	Not ooknowledge		Byte N + X - 1		
N P	Not acknowledge stoP bit				
г	SIOP DIL				

Shared Pin Operation - Input/Output Pins

The I/O pins designated by (input/output) serve as dual signal functions to the device. During initial power-up, they act as input pins. The logic level (voltage) that is present on these pins at this time is read and stored into a 5-bit internal data latch. At the end of Power-On reset, (see AC characteristics for timing values), the device changes the mode of operations for these pins to an output function. In this mode the pins produce the specified buffered clocks to external loads.

To program (load) the internal configuration register for these pins, a resistor is connected to either the VDD (logic 1) power supply or the GND (logic 0) voltage potential. A 10 Kilohm (10K) resistor is used to provide both the solid CMOS programming voltage needed during the power-up programming period and to provide an insignificant load on the output clock during the subsequent operating period. Figure 1 shows a means of implementing this function when a switch or 2 pin header is used. With no jumper is installed the pin will be pulled high. With the jumper in place the pin will be pulled low. If programmability is not necessary, than only a single resistor is necessary. The programming resistors should be located close to the series termination resistor to minimize the current loop area. It is more important to locate the series termination resistor close to the driver than the programming resistor.

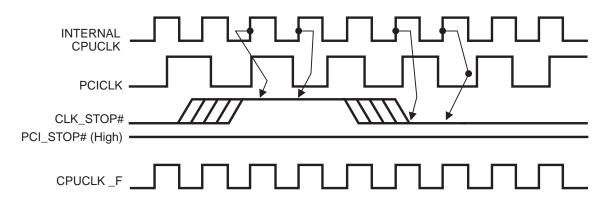



Fig. 1

PD# Timing Diagram

The power down selection is used to put the part into a very low power state without turning off the power to the part. PD# is an asynchronous active low input. This signal needs to be synchronized internal to the device prior to powering down the clock synthesizer.

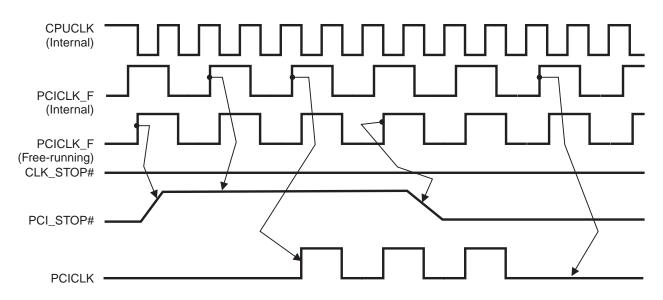
Internal clocks are not running after the device is put in power down. When PD# is active low all clocks need to be driven to a low value and held prior to turning off the VCOs and crystal. The power up latency needs to be less than 4 mS. The power down latency should be as short as possible but conforming to the sequence requirements shown below. PCI_STOP# and CLK_STOP# are considered to be don't cares during the power down operations. The REF and 48MHz clocks are expected to be stopped in the LOW state as soon as possible. Due to the state of the internal logic, stopping and holding the REF clock outputs in the LOW state may require more than one clock cycle to complete.


Notes:

- 1. All timing is referenced to the Internal CPUCLK (defined as inside the ICS952302 device).
- 2. As shown, the outputs Stop Low on the next falling edge after PD# goes low.
- 3. PD# is an asynchronous input and metastable conditions may exist. This signal is synchronized inside this part.
- 4. The shaded sections on the VCO and the Crystal signals indicate an active clock.

CLK_STOP# Timing Diagram

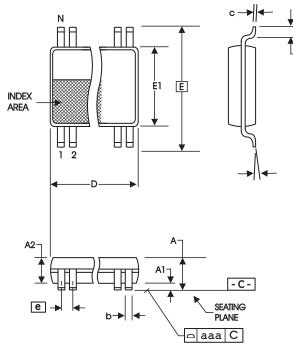
CLK_STOP# is an asychronous input to the clock synthesizer. It is used to turn off the CPU clocks for low power operation. CLK_STOP# is synchronized by the **ICS952302**. The minimum that the CPU clock is enabled (CLK_STOP# high pulse) is 100 CPU clocks. All other clocks will continue to run while the CPU clocks are disabled. The CPU clocks will always be stopped in a low state and start in such a manner that guarantees the high pulse width is a full pulse. CPU clock on latency is less than 4 CPU clocks and CPU clocks off latency is less than 4 CPU clocks.


Notes:

- 1. All timing is referenced to the internal CPU clock.
- 2. CLK_STOP# is an asynchronous input and metastable conditions may exist. This signal is synchronized to the CPU clocks inside the ICS952302.
- 3. CLK_STOP# signal.
- 4. All other clocks continue to run undisturbed.

PCI_STOP# Timing Diagram

PCI_STOP# is an asynchronous input to the **ICS952302**. It is used to turn off the PCICLK clocks for low power operation. PCI_STOP# is synchronized by the **ICS952302** internally. The minimum that the PCICLK clocks are enabled (PCI_STOP# high pulse) is at least 10 PCICLK clocks. PCICLK clocks are stopped in a low state and started with a full high pulse width guaranteed. PCICLK clock on latency cycles are only three rising PCICLK clocks, off latency is one PCICLK clock.



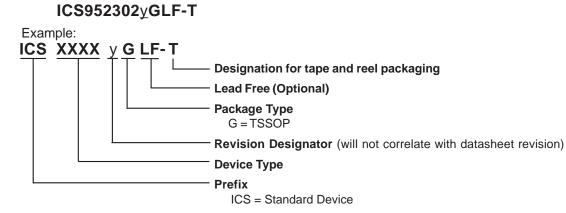
Notes:

- 1. All timing is referenced to the Internal CPUCLK (defined as inside the ICS952302 device.)
- 2. PCI_STOP# is an asynchronous input, and metastable conditions may exist. This signal is required to be synchronized inside the ICS952302.
- 3. All other clocks continue to run undisturbed.
- 4. CLK_STOP# is shown in a high (true) state.

ICS952302

(240 mil) (0.020 mil) 6.10 mm. Body, 0.50 mm. pitch TSSOP

	In Millin	neters	In Inches		
SYMBOL	COMMON DI	MENSIONS	COMMON DIMENSIONS		
	MIN	MAX	MIN	MAX	
А		1.20		.047	
A1	0.05	0.15	.002	.006	
A2	0.80	1.05	.032	.041	
b	0.17	0.27	.007	.011	
С	0.09	0.20	.0035	.008	
D	SEE VAR	IATIONS	SEE VARIATIONS		
E	8.10 B	ASIC	0.319 BASIC		
E1	6.00	6.20	.236	.244	
е	0.50 B	50 BASIC 0.020 BASIC			
L	0.45	0.75	.018	.030	
N	SEE VAR	IATIONS	SEE VARIATIONS		
α	0°	8°	0°	8°	
aaa		0.10		.004	


VARIATIONS

N D mr		m.	D (ir	ich)
IN	MIN	MAX	MIN	MAX
48	12.40	12.60	.488	.496

Reference Doc.: JEDEC Publication 95, MO-153

10-0039

Ordering Information

- 1